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Abstract—As malware detection algorithms and methods become
more sophisticated, malware authors adopt equally sophisticated
evasion mechanisms to defeat them. Anecdotal evidence claims
Living-Off-The-Land (LotL) techniques are one of the major
evasion techniques used in many malware attacks. These tech-
niques leverage binaries already present in the system to conduct
malicious actions. We present the first large-scale systematic
investigation of the use of these techniques by malware on
Windows systems.

In this paper, we analyse how common the use of these native
system binaries is across several malware datasets, containing
a total of 31,805,549 samples. We identify an average 9.41%
prevalence. Our results show that the use of LotL techniques
is prolific, particularly in Advanced Persistent Threat (APT)
malware samples where the prevalence is 26.26%, over twice
that of commodity malware.

To illustrate the evasive potential of LotL techniques, we test the
usage of LotL techniques against several fully patched Windows
systems in a local sandboxed environment and show that there is
a generalised detection gap in 10 of the most popular anti-virus
products.

I. INTRODUCTION

Malware development and detection is a cat and mouse game,

in which malware authors are continuously developing new

techniques to bypass detection systems. Security products such

as anti-virus (AV) implement static and heuristic analysis

technologies to detect, classify and prevent malware from

effective execution [5]. In the past, many solutions heavily

relied on signature-based detection, but unfortunately these

approaches have become less effective due to the use of

polymorphism and packers. In turn, many products started

developing heuristic analysis solutions, consisting of algo-

rithms that allow them to detect malicious behaviour. These

algorithms have become a crucial component for AV engines.

Over time, these algorithms have increased in sophistication

and thus require more innovative evasion techniques.

Malware authors and red teams often research and discover

new methods to bypass security solutions. While their un-

derlying goals may be different in nature, both types of

attackers typically leverage state-of-the-art evasion techniques

to accomplish their goals. From a defender’s point of view,

it is crucial to understand these attacks and study their trends

in order to be able to react in a timely manner. One evasive

tactic that has become popular among both red teams and

malware authors is the usage of Living-Off-The-Land (LotL)

techniques.

LotL techniques refer to the use of binaries that are al-

ready present on systems or are easy to install (e.g., signed,

legitimate administration tools) to conduct post-exploitation

activity. By leveraging these tools, an attacker can achieve

registry modification, gain persistence, conduct network or

system reconnaissance or perform a proxied execution of other

malicious code. They can even be used to reduce the event logs

generated by malicious activity without needing additional

files to be downloaded onto the system.

Far from being obscure techniques, many of them are publicly

documented on the internet [32]. Many open source offensive

security tools leverage LotL techniques and are frequently used

by the entire spectrum of actors, from legitimate red teams

to amateur cybercriminals, organised crime groups or nation

state actors. PoshSpy [15], a Russian state-sponsored APT29

attack module, was one of the first detected APT uses of LotL

techniques, specifically Powershell and Windows Management
Instrumentation. Iranian threat groups [1], APT33, APT34 and

others are also well known for using native Windows binaries

and other signed tools, particularly Powershell [8]. Table I

lists the LotL techniques employed by several state-sponsored

actors.

Despite Living-Off-The-Land being a relatively well-known

term in the information security community, it is sometimes

hard to find a precise definition for it. Moreover, to the best

of our knowledge no research contains a systematic study of

LotL techniques’ prevalence in malware samples. Much of the

documentation available regarding LotL techniques is in the

form of blog posts that document anecdotal findings on certain

malware families, or technical descriptions of the techniques

used by malicious actors once they obtain remote access to a

compromised system.

For instance, Emotet and Trickbot, two of the most common

Remote Access Trojans (RAT) at the time of writing, report-

edly use chained LotL binaries for stealthiness [58]. As a

countermeasure, Microsoft described steps taken to combat

LotL techniques used by commodity RATs [37]. The highly

evasive RAT Astaroth [43], some of TA505’s malware arsenal,

Dexphot cryptominer [38] and Nodersok all use multiple LotL

binaries simultaneously [42].

In this paper, we analyse the LotL phenomenon as it pertains

to LotL binary usage by commodity malware binaries. Our

first step is to describe what a LotL binary is and how



APT Group LotL Binaries Used Purpose Of Execution

APT3 Powershell, Rundll32, Schtasks Credential Theft, Persistence & Proxied Execution
APT10 Certutil, BitsAdmin, Net, Wmic, PsExec Data Exfiltration & Lateral Movement
APT29 Powershell, Schtasks, Wmic Data Exfiltration, Lateral Movement & Persistence
APT33 Powershell, ProcDump, Schtasks, Vbscript Credential Theft, Data Exfiltration & Lateral Movement
APT34 Certutil, Mshta, Schtasks, Powershell C+C, Data Exfiltration, Persistence & Proxied Execution
Astaroth BitsAdmin, Certutil, Regsvr32, Userinit AV Evasion, C+C, Credential Theft & Proxied Execution
Dexphot MsiExec, Rundll32, Nslookup, Schtasks Persistence, Proxied Execution
Gallmaker Powershell, Winword C+C, Data Exfiltration & Proxied Execution
Havex BitsAdmin, Powershell, PsExec Credential Theft & Lateral Movement
Nodersok Mshta, Node, Powershell AV Evasion, Command and Control & Proxied Execution
SoftCell At, Net, PsExec, Reg, Wmic Credential Theft, Data Exfiltration, Lateral Movement & Recon
TA505 Msiexec, Net, Rundll32, Powershell C+C, Data Exfiltration, Proxied Execution & Recon
Turla Powershell, PsExec, Wmic, Wscript C+C, Data Exfiltration. & Proxied Execution

TABLE I: APT Groups Using LotL Techniques.

it can be leveraged by malicious software to conduct its

nefarious actions. We focus our research on Windows as the

dominant operating system in terms of popularity and the

most frequently targeted by malware [63]. Many LotL based

AV evasions have been documented. As a consequence, the

security community has largely assumed that LotL techniques

such as proxied execution of malware are in fact effective

against security solutions. As a first step, we question this

assumption and raise our first research question:

• Can LotL techniques effectively evade commercial AV?

To answer this question, we evaluate a representative set of

security products and show how some of these techniques,

although well-known for attackers and defenders, are still a

valid method to bypass security solutions and therefore are

an open challenge for the security industry. In fact, LotL

binaries are quite often used by system administrators and

advanced computer users to perform system administration

tasks, making it extraordinarily difficult to distinguish between

legitimate and malicious behavior even for a trained analyst.

We responsibly disclosed our findings to the affected AV

vendors and followed up with many of them as they improved

their detection capabilities.

Although existing documentation provides sound evidence of

the usage of these techniques, it is still unclear how prevalent

the phenomenon is among malware samples. In this way, we

raise our second research question:

• How prevalent is the use of LotL binaries in malware?

Building on this, we try to shed some light on some of the

trends in the current threat landscape, to identify:

• What purposes do malware binaries use LotL techniques
for?

• Which malware families and types use LotL binaries most
prolifically and how does their usage differ?

We also investigate the reasons why these techniques are

difficult to detect. Some of the AV firms that engaged with

our responsible disclosure communications highlighted the dif-

ficulty of separating malicious attacks from totally legitimate

administration tasks conducted by system administrators. This

brings us to another question:

• What are the overlaps and differences in the behavior
of legitimate and malicious binaries with respect to the
usage of LotL binaries? How would this affect detection
by heuristic AV engines?

While there are some clear differences in LotL binary usage

prevalence between malicious and benign samples, we also

noticed certain similarities for categories such as proxied

execution.

Finally, we focus our attention on highly evasive and Advanced

Persistent Threat (APT) malware to find out that it leverages

these techniques twice as much as commodity malware. State-

sponsored attack groups, that researchers attribute to China

(APT3/APT10) [48], Iran (APT33/APT34) [49] and Russia

(APT28/APT29) [50], amongst others, are examples that moti-

vate this study. We list some of these APT groups that conduct

attacks using LotL techniques in Table I.

Contributions. To the best of our knowledge, this paper

presents the largest scale systematic analysis of the use of

LotL techniques by commodity and APT malware to date. We

make the following core contributions:

• We assess the evasiveness of LotL techniques by testing

a representative set of most popular AV engines against

malicious payloads deployed via LotL techniques, show-

ing how the detection complexity of LotL represents

a challenge for the industry. Even nine months after

disclosure, these techniques are still not successfully

detected.

• We conduct a large-scale measurement study across sev-

eral datasets that are representative of modern commodity

malware. We determine the prevalence of this technique

and the differences among different malware families and

types. We also assess the impact that LotL techniques

might have in the industry due to false positive risk.



• We evaluate a dataset of APT malware, which we make

public to facilitate further research and ascertain that it

executes LotL techniques twice as frequently as com-

modity malware. We also identify which APT groups use

LotL techniques the most.

II. BACKGROUND & RELATED WORK

In this section, we first define LotL binaries and enumerate

some of the purposes for which these binaries are used by

malware. Then, we provide an overview of related papers and

research on this topic.

A. LotL Binaries

Due to its novelty, there is significant confusion regarding

the term Living-Off-The-Land binary, or its shorter version

LOLbin. In recent years, this term has become a common

word used to refer to a wide range of binaries used in

cyberattacks. Researchers tend to put many different tools

under the umbrella of LOLbins.

The term ‘Living-Off-The-Land’ has historically been used

to represent the concept of feeding (or living off) what the

land can provide, either by farming or hunting. Transposed

to malware and intrusion, an attacker might leverage what is

already available to them (either already present on the system,

or easily installable) to conduct a successful attack and avoid

detection.

Some have provided rather restrictive definitions for the term

LOLbin. This could be subject to debate, and there is no con-

sensus within the community around this term. For instance,

the well-known website LOLBAS project [46] lists a wide

range of LotL binaries. Within this list, we are able to ascertain

that many of the tools are administrative commands used by

system administrators in their daily operation.

In this paper, we define a LotL binary as any binary with a

recognised legitimate use, that is leveraged during an attack

to directly perform a malicious action; or to assist indirectly,

in a sequence of actions that have a final malicious out-

come.

Binaries installed by default on Windows systems like

Reg.exe, Sc.exe and Wmic.exe are the most frequently

executed by malware. Most binaries installed by default are

signed by Microsoft Authenticode [35]. An Authenticode sig-

nature proves that a binary has not been tampered or modified

from its compilation. This may have a high impact in the

confidence that security tools have on it; as discussed by Kim

et al. [27], these binaries may even be explicitly whitelisted.

Malware making use of trusted LotL binaries could thereby be

more capable of evading AVs. The use of system binaries on

Windows systems can be incorporated as part of the operation

of malware, and more importantly, many LotL techniques

make use of system binaries for the purpose for which these

binaries were intended.

External signed binaries can also be used, such as

PsExec.exe or other SysInternals binaries. We also

included these in our analysis, but they are less commonly

used by malware. Examples of nation state malware using

external signed binaries, amongst many, are SoftCell [30]

and Havex [13]. These campaigns both used PsExec.exe
to stealthily run remote commands for the purpose of lateral

movement within compromised networks. In some rarer

cases, vulnerable (but signed) drivers have been used to

escalate privileges on the system. This is a technique used

by the RobbinHood ransomware [7] and various APT wiper

malware samples targeting Saudi Arabian systems including

Dustman [51], Shamoon and Zerocleare [25].

Traceability. Certain LotL binaries may leave more system

logs than others, that can be leveraged by security tools or

forensic analysts in order to detect a malicious action. For

instance, Powershell can be configured to have comprehensive

logging. Microsoft also recommend a number of these native

binaries to be blocked from executing on systems, unless

there is good reason to do otherwise [39].

B. Scope of our Study

In this paper, we focus on Windows malware that executes

system binaries for various purposes. These purposes typically

involve progression along the intrusion kill chain [24] or

avoiding AV detection. All of these techniques are deployed

within the user space of the system.

Process hollowing and injection are also not within the scope

of our analysis, despite being common techniques deployed by

fileless malware. We do not include these process manipulation

techniques as they are not LotL techniques according to our

earlier definition.

C. Related Work

LotL malware and its occasional aliases, ‘advanced volatile

threat’ or ‘fileless’ malware are mentioned sparsely in the

current academic literature. This is mostly limited to intro-

ductory analyses or described as an emerging highly evasive

malware variant. Li et al. [31] present an analysis of malicious

Powershell scripts that has a subsection specifically describing

LotL attacks and fileless attacks as the trend of cyber attacks in
recent years. A recent paper by Wang et al. [72] on the subject

of data provenance analysis identifies Living-Off-The-Land as

an emerging prominent evasive malware subtype. Prior work

includes introductory analyses [64], however LotL malware

has not yet been subject to robust academic analysis. Syman-

tec [73, 66] and Cisco Talos’ [65] white papers introduce the

subject with an analysis of prevalence across a number of

datasets. Currently, no papers conduct a systematic analysis

of the use of LotL techniques by Windows malware at scale,

comprising multiple datasets.

LotL techniques are mentioned in some papers, emphasising

stealthiness and their use by APT malware. Pendergrass et

al. [56] state LotL is a malware subtype that is often unde-
tected. These descriptions provide evidence of the need to



quantify the evasive capabilities of these techniques against

specific AV engines.

In a paper on the malware analysis tool Yara, Cohen [9]

describes LotL as a trend that has been recently observed in
the tactics used by elite threat actors; this claim is reinforced

by the results of our analysis. Research by Hassan et al. [21]

states that APT malware uses LotL attack strategies to enable

persistent campaigns and analyses two campaigns, compared

to our less granular analysis of 16,232 samples. Their work

also leverages MITRE’s ATT&CK [45] by which MITRE de-

fines an excellent taxonomy that describes and classifies most

well-known attacks. Numerous LotL techniques are indexed

within the MITRE ATT&CK framework. MITRE corporation

and their Common Vulnerabilities and Exposures (CVE) are an

established authority within the security field. Their inclusion

and description of many LotL techniques are an indication that

this is a subject worthy of further analysis.

Orthogonal to our research is the analysis and deobfuscation of

script-based malware. Malware making use of LotL techniques

often uses malicious scripts as payloads. Mitigations against

malicious scripts invoked by the Powershell.exe binary

have been tested by the identification of suspicious behavioural

patterns by Ugarte et al. [67]. Other papers such as Rubin et

al. [61] apply machine learning to the detection of Powershell

malware. Curtsinger et al. [11] propose detection mechanisms

for malicious Javascript. While these papers propose effective

detection methods for narrow subsets of malicious payloads

delivered, they do not analyse the wider malware ecosystem

and how these payloads are triggered by LotL binaries.

III. MOTIVATION: ANTI-VIRUS PRODUCTS VS.

LIVING-OFF-THE-LAND TECHNIQUES

Security researchers have documented many cases where LotL

techniques can be used to successfully evade security products

[41]. In many of these cases, these LotL binaries are leveraged

to proxy the execution of a malicious payload, having it

execute under the context of a legitimate looking process, or

spawning a new process as a child of a legitimate system

process. In some cases, these payloads are executed as a side

effect of the LotL binary invocation, while in others it is just

the result of its main documented behaviour. Many AV prod-

ucts reportedly fail to properly detect these techniques.

To answer our first research question, we first analysed

whether current AV products flag LotL techniques as indi-

cators of malicious behavior. To this end, we first selected a

representative set of 10 end-user AV products and simulated

attacks by leveraging a reverse shell executed by common

well-known LotL based proxied execution techniques. The AV

engines we installed on each host were taken from an industry

compiled list of the ten most popular AV engines [54], all of

which advertise behavioural analysis capabilities. Moreover,

the intention of this study is not to test the detection capabili-

ties of any particular AV product or to compare them against

each other, but to determine if a generalised detection gap
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Malwarebytes for Windows Pre-
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Sophos Home Premium
Webroot SecureAnywhere AV
Windows Defender / AMSI � �

TABLE II: AV detections for our initial experiments on

Windows 10.

exists. Although we endeavoured to configure every product

to apply its full detection capabilities, these results shall not be

used for comparison of AVs as behavior may vary depending

on the environment, targeted end users, and configuration

settings.

We performed these experiments within networked Windows

10 virtual machines, with up-to-date local AV products con-

nected to their cloud components. We omit the precise setup

details here, but describe them in Appendix C.

We leveraged a reverse shell to assess how vulnerable AV

systems are to evasion by malware deploying LotL techniques.

We deem a reverse shell, capable of allowing remote execution

of commands, to be a sufficient proof of successful code

execution. A remote network connection executing commands

is identical to many Remote Access Trojans (RAT)’s function-

ality. We conducted our experiments by running this reverse

shell from different LotL binaries to test whether AV products

detect these techniques as malicious. We obfuscated reverse-

shell payloads when necessary and used various payload types

to test AV’s capability to detect the delivery mechanism

itself, not the specific payload being delivered through static

signatures. The LotL binaries that we leveraged for testing

and the specific techniques by which we achieved evasion are

described in detail in Appendix D.

Table II shows the results for this experiment. We can observe

that most popular AV engines allowed us to establish a reverse

shell and execute commands, using various LotL techniques

that are common in commodity and APT malware.

Responsible Disclosure and Response. We issued a docu-

ment to all AV vendors concerned, containing in-depth tech-

nical results of our evasion tests with above 90 days notice. To

assist with remediation, the documents we provided included
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TABLE III: AV detections for our repeated experiments (9

months after initial testing).

evidence of how each evasion was conducted. Some vendors

patched their detection algorithms and actively engaged with

our research; others denied or ignored the responsible disclo-

sure process. Moreover, some AV vendors reported difficulties

with detecting some of the documented cases as detection rules

are prone to false positives.

Experiment Repetition. We repeated our tests on Windows

10 machines, nine months after our initial evasion testing.

This allowed us to test if AV vendors had included new

heuristic rules in their products to detect LotL binary usage.

The detection capabilities of AVs in this second experiment is

shown in Table III. We can observe that a number of vendors

updated their detection capability. 25 out of 60 of the exact

same payloads were detected.

In some of the tests where our reverse shell was detected, we

modified the payload (applied a different obfuscation method

or ran a different payload) while maintaining the exact same

command line arguments for the LotL binaries, in an attempt

to establish whether the detection was implemented to match

the delivery mechanism or the payload. By leveraging these

obfuscated and modified payloads, we successfully executed

a reverse shell in 19 of these 25 blocked instances.

These results show that LotL techniques are still a significant

challenge for AV vendors. These tools are commonly lever-

aged by legitimate users in unpredictable ways, and security

companies struggle to deploy effective detection strategies

without false positives. The following sections will show how

these techniques are a prevalent phenomenon in commodity

malware, and how this problem should not be overlooked by

the security community.

IV. MEASURING LOTL PREVALENCE

In this section we measure the prevalence of LotL techniques

in malware and try to answer the research questions raised.

This measurement effort was conducted over 9 separate sub-

datasets. In total, we collected 31,805,549 samples from which

we obtained 16,048,202 behavioural reports from VirusTotal

(VT).

A. Dataset Composition

To be as comprehensive as possible, we obtained public

and private datasets from different sources. We chose var-

ied datasets to represent possible malware distributions. We

included public malware datasets leveraged by the research

community throughout the years to ensure completeness and

reproducibility. To complement these data sources, we created

three additional datasets following three different collection

strategies. These datasets are listed in Table IV.

Public Datasets. We included several public and well-known

malware datasets to enable reproducibility, conducting pre-

processing where necessary to isolate PE binaries. We included

these larger scale datasets to represent commodity malware

used in previous research efforts [2, 55]. We included a

collection from the VirusShare [69] corpus of hashes of un-

packed binaries, in addition to hashes identified as PE hashes

by existing pre-processing of files. We included the Ember

dataset [3] of Windows malware PE files, released for training

machine learning models. We also leveraged a feed of malware

executables, collected and distributed by Georgia Tech [26].

Finally, we also included samples from VX-Underground [70]

and Malshare [33], both well known public datasets.

VirusTotal Balanced Dataset. We gathered 237,288 hashes

from VT. We attempted to balance the presence of families and

variants to avoid over-representing certain prolific families.

Malware feeds like VT usually distribute large numbers of

variants of the same polymorphic families [68]. The prevalence

of a given malware family in such a feed is not necessarily

related to its freshness, impact, or prevalence in the wild. For

this reason, we used a custom approach to measure AV label

similarity. This approach is based on the min-hash algorithm

applied to normalised AV labels for samples with at least 20

positives. In order to normalise labels, we leveraged the pre-

processing code in the AVClass [62] project. AVClass is a tool

that facilitates extraction of the family name that a sample

belongs to, according to the labels provided by the different

AV vendors.

By leveraging this sample selection method, we avoided the

over-representation of prominent polymorphic families (such

as worms or file infectors like Virut or Allaple) [68] or

identical variants of the same family. The removal of these

variants balanced the representation of every family in the

dataset.

We collected a total of 1.5 million unique PE executable files

from VT in the course of 6 days (December 10th to December

16th, 2019), and finally selected a subset of 237,288 diverse



Type Dataset
Name

No. Of
Hashes

No. Of
Behavioural
Reports

No. Of
Crash
Reports

No. Of
Blank
Reports

Public Ember [3] 1,235,190 612,400 56,339 113,021

Ember Benign 740,679 158,763 10,364 76,320

VirusShare [69] 18,176,364 8,639,474 234,416 2,027,913

Vx Underground [70] 394,383 102,541 6,550 28,952

Georgia Tech [26] 8,070,223 5,095,615 285,134 281,451

MalShare [33] 2,903,350 1,277,507 66,319 176,701

Private APT 16,232 7,668 336 2,081

Yara 31,840 31,834 436 50

VirusTotal Balanced 237,288 122,400 10,270 16,513

TABLE IV: Constituent datasets and their behavioural reports.

samples. We make these hashes available to enable further

research.

APT Malware. We gathered a dataset of APT malware

following a method similar to the dataset paper dAPTaset [59].

We processed HTML pages and pdf files and extracted all

malware hashes contained within these files. We collected APT

reports from various threat intelligence companies, govern-

ment agencies and other entities that release threat intelligence

data online, mostly from the APTnotes [4] repository. We then

processed these reports, creating an aggregated collection of

APT malware hashes, which we make public.

Yara Rule Match Malware. We collected an additional

dataset by leveraging the live hunting service from VT. To

this end, we deployed three Yara [9] rules we wrote to

detect the use of LotL binaries based on the behavioural

footprint of the samples. We make these rules public in our

repository. Livehunt ran the provided Yara rules against all

malware binaries uploaded to the VT platform. We used

Livehunt to identify new malware hashes uploaded to VT that

matched the behavioural characteristics of malware using LotL

techniques. We subsequently inserted these malware hashes

into our database for augmentation and analysis.

Our Yara rules import an extension of the default Yara libraries

that integrates the use of the Cuckoo module [74]. The

Cuckoo module in Yara allows rules to match artefacts of the

behavioural report. To this end, we leveraged the file access
parameter. Whenever a process creates another process, the

report shows an entry indicating that the image (PE file) of

the created process has been accessed. This artefact allowed us

to preselect candidate samples by finding occurrences of the

file system locations of LotL binaries being accessed.

B. Analysis Pipeline

Once we had gathered the different datasets composed of

Windows Portable Executable (PE) binaries, we analysed the

behaviour of the samples. To facilitate this we implemented

an analysis pipeline consisting of three phases: data collection

(described in the previous section), data augmentation and

analysis.

We augmented the data for the collected malware hashes by

querying VT’s public API and adding the returned additional

data to our database. We added this data to provide contextual

information about the malware under analysis as well as

enabling the filtering of malware by characteristics. This

additional data includes detection by different AV products, the

first seen date and behavioural reports from dynamic analysis

of the binary. Each behavioural analysis report contains a list

of shell commands and processes executed or created. We

additionally ran AVClass [62] against each sample to add a

family classification. Finally, we processed all the behavioural

reports to identify the samples that apply any LotL technique

among all the candidates. We provide a detailed description

of the process followed in Section IV-C.

C. LotL Technique Identification

We processed all the collected behavioural reports by using

pattern matching to identify invocations of LotL binaries

within the execution of the malware. For this, we parsed the

following report indicators:

Shell Commands. Shell commands are commands that a

malicious binary executes in the shell of the host operating

system. Shell command logs can show executions of a system

binary by a reference to its absolute path. The command

prompt for Windows also includes a number of aliases such

as reg for Reg.exe, by which system binaries can also be

executed.

Processes. Process logs specify system binaries executed

by a malware sample. Parameters provided to the executed

binary are also contained within process logs in behavioural

reports.

In our analysis, we assessed that a sample uses LotL tech-

niques if its behavioural report contained at least one execution

of a LotL binary. We recorded the details of every LotL



binary execution with its parameters and inserted them into the

database. We then analysed the parameters of these malware

samples to determine the most frequent parameter types and

execution purposes in every dataset. More specifically, we

identify these two separate types of binaries:

Default System Binaries. This set of binaries comprises

those native to the system according to the LOLBAS project,

together with those present in the System32 folder of a

Windows 10 system. To identify the execution of these

binaries, we conducted string matching over the process logs.

Installed Signed Binaries. We extended our selection of

LotL binaries with those not installed by default, mentioned

in the 2017 Symantec LotL report and the SysInternals

tool suite [36], in addition to those listed in the LOLBAS

project.

Pattern Matching Refinement. We iteratively validated a

cross-section of each result set, identified misclassified cases

and removed them from our results database, refining our pat-

tern matching approach. We conducted this until all identified

LotL commands were properly categorised and mapped to an

execution purpose. Additionally, as shown in Table IV, we

identified anti-VM malware artefacts or erroneous reports and

do not include them within our measurements.

We also found a number of LotL binary executions where

no parameters were provided. These occur in the case of

either an execution of a binary without parameters, or process

hollowing, replacement or injection, all of which are out

of scope for our analysis. To justify removal, we manually

validated a small number of these samples.

Additionally, we identified several system binaries being exe-

cuted in the reports that were artefacts of the sandbox and are

not directly related to LotL technique usage. One such forensic

artefact we removed is the execution of Explorer.exe, that

is typically a remnant of the execution of malware samples

by the sandboxed environment. We removed executions of

Explorer.exe with the parameter of the absolute address

of C:\ and a suffix of the SHA256 hash of the malware

sample in question. We did not remove forensically relevant

executions of Explorer.exe to open webpages or other

directories.

We also removed instances of Verclsid.exe, after manu-

ally verifying a subset of the 64,385 executions in our dataset.

We removed these instances as they were simply forensic

artefacts showing verification of COM objects before they

were instantiated by Windows Explorer. Whilst the malicious

usage of this tool to spawn processes [29] is known, we

did not observe any occurrences of this behaviour in our

dataset. Finally, we found that many legitimate binaries from

the Ember benign dataset were spawning Msiexec.exe. We

manually inspected these cases and determined them to be

legitimate installer files packaged with the MSI installer tool.

BehaviourRaw Command

Reg add hklm\system\...

At.exe 10:15 c:\mal.exe

Cscript.exe mal.vbs

Rundll32.exe c:\mal.dll

Purpose of Execution

Registry Modification
via Reg.exe

Executing .dll via
Rundll32.exe

Executing .vbs script
via Cscript.exe

Persistent Execution of
Command at Future

Time via At.exe

Proxied Execution of
Code

Persistence

Registry Modification

Fig. 1: Examples of raw commands being mapped to be-

haviours, which are in turn mapped to execution purposes. This

illustrates the classification heuristic we applied to identify an

execution purpose.

We discarded these cases as they do not represent LotL binary

usage.

D. Parameter Analysis to Identify Execution Purpose

To identify the purpose of LotL technique executions, we

observed the parameters provided by malware samples. Figure

1 illustrates the mapping of four process executions. This

mapping was conducted across all datasets by identifying in-

dividual execution purposes, such as executions of Net.exe
with the stop parameter as task stopping. After individual

commands had been mapped to an execution purpose, we then

selected all matching executions for that binary. We repeated

this across all system binary executions until every execution

was classified as belonging to a specific execution purpose or

removed as a misclassified case (refining our pattern matching

rules). Following this approach, we grouped the parameters by

purpose into nine separate categories. Three of these categories

are related to execution:

• Proxied Execution. Malware using a LotL binary to

abstract execution of other code e.g., Mshta.exe exe-

cuting .hta files and Rundll32.exe executing .dll files.

• Persistence. Malicious code achieves persistence if it

configures or modifies the system to execute a com-

mand or stored job at a future point in time. This is

typically resultant from a system configuration change

by a malware sample. e.g., Sc.exe with the create
parameter, Bitsadmin.exe with the /create parameter

or Schtasks.exe/At.exe with a datetime parameter.

• Delayed Execution. Using a LotL binary to delay ex-

ecution e.g., Ping.exe executing -n, followed with a

number, and an & to trigger the execution of another

binary.



Fig. 2: Relative prevalence of samples using LotL techniques

per dataset.

The following three categories, instead, relate to the modifi-

cation of underlying system components. Malware typically

engages in this behaviour in order to enable further propaga-

tion or action on objectives on a machine.

• Firewall Modification. Modifying firewall configuration

e.g., Netsh.exe with the Firewall parameter and suc-

cessive commands.

• Registry Modification. Modifying registry settings e.g.,
Reg.exe with an Add or Delete parameter and a registry

location.

• Permissions Modification. Modifying permissions of a

file e.g., Cacls.exe with a parameter that includes an

absolute file location.

Finally, we distinguish the following three categories that are

not related to execution or system modification:

• File Opening. Opening a file, via binary execution e.g.,
Explorer.exe followed by a relative or absolute file

location.

• Reconnaissance. Elicitation of local or remote config-

uration for lateral movement, leveraging a LotL binary

e.g., Net.exe with user localgroup administrators or

execution of Ipconfig.exe, outputting to a file.

• Task Stopping. Surreptitious stopping of another process

or service using a LotL binary e.g., Taskkill.exe
executed with another process name as parameter. In

many cases, the goal of these executions is to disrupt

system security services.

System
Binary

Frequency of LotL Binaries By Dataset
VTB Ember GT MS VS VXU

Reg 15.49 7.07 42.16 4.26 11.10 5.88
Nslookup 15.14 4.49 0.58 4.55 0.00 0.70
Regasm 9.93 1.25 0.00 0.44 0.00 1.60
Runas 7.84 0.39 6.51 0.00 0.00 0.00
Schtasks 7.50 3.78 3.66 0.26 0.00 4.27
Sc 5.87 6.08 1.44 1.17 14.08 10.00
Wscript 3.31 1.95 1.59 0.61 2.36 5.50
Rundll32 3.16 4.70 2.63 14.00 5.25 8.62
Regsvr32 2.99 3.62 2.99 8.58 4.47 5.87
Attrib 2.83 4.63 15.59 0.32 1.18 3.63
Net 2.52 8.45 4.14 1.89 9.85 9.48
Ping 2.14 27.19 5.61 1.31 5.06 4.81
Taskkill 1.49 2.39 0.67 4.04 3.40 6.30
Netsh 1.40 3.37 0.62 2.49 5.19 6.54
Timeout 1.36 0.74 0.56 0.33 0.00 1.13
Wmic 1.27 0.62 0.50 36.14 9.63 0.55
Mshta 1.09 4.68 0.76 10.72 0.74 0.60
Cacls 0.89 0.00 0.48 0.23 0.80 3.11
Regedit 0.52 1.55 0.00 0.00 6.97 2.79
Tasklist 0.00 0.00 0.00 0.00 2.60 0.85
Cscript 0.00 0.88 3.96 0.00 1.52 0.00
Explorer 0.69 0.69 0.41 0.00 1.91 6.0
Msiexec 0.55 1.78 1.78 0.57 0.58 0.00
Vssadmin 0.00 0.81 0.00 0.58 0.00 0.00

TABLE V: Most frequently used binaries for each dataset

(percentage of the number of distinct sample-binary executions

observed). 5 most common highlighted in grey.

V. MEASUREMENT RESULTS

We followed the methodology described in Section IV to

evaluate the prevalence and nature of LotL techniques, and

to answer the research questions raised for this study.

A. Prevalence of LotL Techniques in Commodity Mal-
ware

Relative Prevalence Between Datasets. Figure 2 shows the

percentage of malware samples that use LotL techniques in

every dataset. If we omit Ember’s benign dataset and the

APT malware dataset, we can observe that between 5.42%

and 12.72% of commodity malware samples used a LotL

technique at least once. Within our VT balanced dataset,

we can observe that 9.6% of samples leveraged this type

of technique. These numbers show that LotL techniques are

a relatively widespread phenomenon and not an anecdotal

occurrence in specific malware samples or families.

Interestingly, APT datasets employed LotL techniques signif-

icantly more frequently than commodity malware. 26.26% of

the APT dataset made use of LotL techniques, more than

twice that of comparable commodity malware datasets. Our

findings confirm the assertions of many reports that state that

APT campaigns use LotL techniques due to the increased

sophistication and evasive requirements of state-sponsored

malware authors. Section V-C presents deeper findings about

the APT dataset, while the rest of this section focuses on

commodity malware. We excluded the Yara dataset from this
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Fig. 3: Comparative execution purposes for each dataset by percentage.

figure given its different nature. In this particular case, 47%

of the files retrieved by our Yara rules were later assessed to

have used some kind of LotL technique. This result is also

interesting, as it means that half of the times that a malicious

sample accessed a system binary, it did so to leverage it as a

LotL technique, instead of for other purposes.

Another notable finding is that in the Ember benign dataset,

2.05% of the samples show executions of LotL techniques.

This number is significantly lower than the 9.41% average

prevalence of LotL techniques across regular commodity

malware datasets. We provide additional evidence for this

observation in Section V-B.

Most Frequently Used LotL Binaries. Table V shows the

most commonly executed LotL binaries in our commodity

malware datasets. We can observe that commodity malware

executes some system binaries more frequently than others.

These numbers also show a significant variability depending

on the specific dataset distribution, as each of the datasets

might have been collected in a different way and at a different

time. If we look at the VT balanced dataset, the most com-

monly used binaries were Reg.exe, Nslookup.exe, Re-
gasm.exe, Runas.exe, Schtasks.exe, and Sc.exe.

Some of these binaries were used for system administration

tasks such as editing the registry or creating scheduled tasks.

Others were used to change or elevate privileges, or to enable

network activities. It is notable that certain binaries show dif-

ferent distributions across datasets. This means that although

LotL techniques are a widespread approach among malware

writers, they are used in an heterogeneous way among malware

families or malware types.

Parameters and Execution Purpose. We also identified the

execution purpose for the occurrences of the most commonly

used LotL binaries by parsing their parameters. Figure 3

shows the resulting distribution of execution purposes. The

most frequent purposes are proxied execution, reconnaissance,

task stopping and modification of the registry. We can also

observe that there is a significant variability between datasets,

as expected from the results shown in Table V. Nevertheless,

these results show that malware uses LotL binaries not only

to surreptitiously execute other code, but also to modify

the underlying operating system via registry modification, to

enable lateral movement via reconnaissance, or to avoid other

software running in the system (e.g., many malware families

try to stop security software applications when they start

running on a system).

Malware Families. We identified a number of malware fam-

ilies that are notably prolific (i.e., those for which nearly all

of their samples used one or more LotL techniques), while

others had a very low LotL binary adoption. We limited this

classification to families that contained at least 100 samples, to

prevent bias caused by potentially under-represented families

with a small number of samples.

Figure 4 shows the number of families, as reported by AV-

Class, for which a given percentage of their samples leveraged



Fig. 4: Distribution of families using LotL techniques.

a LotL technique. We can observe that a high number of

families did not use LotL binaries, while a small number of

families presented high prevalence of these techniques. This

means that while there is a significant adoption of LotL overall,

the usage of these techniques is concentrated in a limited

number of families.

B. Comparison of Benign and Malicious Samples

We have observed that LotL techniques are a widespread

phenomenon both in commodity malware and APT campaigns,

and although there might be some differences across malware

types or families, it is clear that the security industry should

not overlook this threat. With this in mind, we raise another

question: Why do some security products have difficulties
detecting these techniques? At the beginning of this paper we

confirm that many AV products cannot effectively detect the

usage of these binaries, and some responses to our responsible

disclosure messages suggest that detection mechanisms could

be very prone to false positives. In this section, we compare the

usage of LotL binaries in legitimate software. To this end, we

leveraged the benign software dataset from Ember described in

more detail in Section B, and our VT balanced dataset.

Table VI shows the most commonly executed binaries

in the benign dataset. Regsvr32.exe, Sc.exe and

Rundll32.exe are among the most commonly executed

binaries, all of which are used for the purpose of executing

code. We can notice that the most commonly executed bi-

naries for malware (see Table V) and benign software differ

significantly.

Figure 5 shows samples that leverage a LotL technique,

grouped by execution purpose. We observe that while some

execution purposes are more prevalent in malicious binaries

than in benign binaries (e.g. reconnaissance, persistence and

registry modification), there is an opposite trend for others.

For instance, we can notice that the most frequent purpose in

both malware and benign software is proxied execution. This

finding correlates with our observations in Section III, where

Fig. 5: Execution purpose of benign and malicious samples

from Ember and Ember Benign datasets.

System Binary Samples Percentage

Explorer 230 12.62%
Regsvr32 190 10.43%
Sc 148 8.12%
Rundll32 128 7.03%
Taskkill 99 5.43%
Ping 71 3.90%
Net 66 3.62%
Mstsc 58 3.18%
Attrib 58 3.18%
Regedit 40 2.20%

TABLE VI: Top 10 most frequently used binaries in benign

dataset (number of samples and percentage of the number of

distinct sample-binary executions observed).

we tested several AV solutions to find out if they detected

the proxied execution of a reverse shell. The results show

that these behavioural patterns pose a significant challenge for

creators of heuristic AV algorithms. This is also reflected by

the response of some vendors to our responsible disclosure

process, where one of the claims suggested that the false

positive risk was significantly high. The finding also simul-

taneously illustrates that not all LotL binaries or purposes

are equally prevalent in benign and malicious software, and

therefore AV vendors still have the opportunity to create

heuristic rules to identify the types of techniques that are not

as prevalent in benign software.

C. Prevalence of LotL techniques in APT Malware

In the previous section, we observed how LotL techniques are

significantly more frequent in APT malware than commodity

malware (see Figure 2). For this reason, in this section we



System Binary Samples Percentage

Ping 493 25.96%
Rundll32 228 12.01%
Reg 212 11.16%
Wscript 194 10.22%
Xcopy 122 6.42%
Net 77 4.05%
Tasklist 48 2.53%
Ipconfig 47 2.47%
Expand 44 2.32%
Systeminfo 41 2.16%

TABLE VII: Top 10 most frequently used binaries in APT

dataset (number of samples and percentage of the number of

distinct sample-binary executions observed).

APT Campaign Percentage LotL Binaries

Havex 100.00% Rundll32
Hurricane Panda 100.00% Msiexec
El Machete 100.00% Schtasks
Regin 100.00% Dllhost
Lazarus 100.00% Net, Netstat, Ping, Reg
Keyboy 100.00% Net, Rundll32
Keyboy 100.00% Rundll32
Black Vine 94.39% Net, Ping, Reg,

Regsvr32, Rundll32
Roaming Tiger 89.47% Expand, Powershell
WIRTE Group 80.00% Rundll32, Schtasks, Wmic
APT28 Zebrocy 77.78% Reg, Tasklist
Magic Hound 75.00% Attrib, Taskkill, Wscript
Hangover 71.86% Attrib, Cscript, Findstr,

Net, Reg, Wscript
APT28 Zebrocy 66.67% Mshta, Wscript
Lotus Blossom 66.67% Net, Rundll32
APT27 63.64% Msiexec
Subaat 60.42% Attrib, Ping, Reg, Regasm
Dimnie 54.36% Ping, Rundll2

TABLE VIII: APT campaigns (from threat intelligence cam-

paign reports) with over 50% of samples using LotL binaries.

focus on APT malware and measure several aspects. First, we

show the particular APT campaigns with the highest percent-

age of samples that use LotL binaries, and we group them

based on threat intelligence reports. We also enumerate the

LotL binaries that APT malware leverages most often.

Table VII lists the most common LotL binaries that we

observed in the APT dataset. We can observe that that APT

malware uses many of the same binaries as commodity

malware, with Ping.exe as the most frequent one. This

binary is often used for subtly delaying execution, with ‘local-
host’ as the most frequent destination. Rundll32.exe and

Wscript.exe, tools for proxying the execution of malicious

code, are used by many samples; substantially more than they

are within commodity malware datasets. The reconnaissance

tools Ipconfig.exe, Net.exe and Tasklist.exe are

also used by a number of different samples. Reg.exe is

commonly executed by APT malware, but more infrequently

than in commodity malware. We observe that APT malware

mainly uses LotL techniques for delayed and proxied execu-

tion, as well as reconnaissance. This may in part reflect that

APT malware aims to enable stealthy lateral movement and

exfiltrate data.

APT Campaigns. Table VIII displays some of the APT cam-

paigns we identified as using LotL techniques most prolifically,

based on threat intelligence reports where behavioural data

was available. It is notable that several APT groups, such as

APT28 and Keyboy, have multiple campaigns and samples.

This indicates that APT groups that use LotL techniques use

them across multiple campaigns.

VI. CASE STUDIES

In this section we investigate and describe two recent ran-

somware families from our dataset: Gandcrab and Cerber.

Ransomware is one of the most prevalent threats nowadays

due to how profitable it is for malicious actors [23]. We chose

these families because they heavily rely on LotL techniques

of different types and execution purposes and illustrate how

a malware sample can chain different LotL techniques to

achieve its goals. We executed samples from these families

to observe and document their behaviour at different phases

of the intrusion killchain.

We also describe two APT malware groups, Turla and

GreyEnergy. APT group Turla shows an evolution in the

adoption of LotL techniques over time, while GreyEnergy [53]

was involved in highly disruptive attacks to the Ukranian

power grid. We manually analysed the use of LotL binaries

in these samples.

a) Gandcrab: Gandcrab is a ransomware family that operated

from late 2018 to early 2019, in several different variants. We

executed Gandcrab ransomware samples in a local sandboxed

environment and recorded the executed commands. We ob-

served the following LotL binaries being used by Gandcrab

samples:

C:\Windows\System32\cmd . exe / c vssadmin d e l e t e
shadows / a l l / q u i e t

C:\Windows\System32\cmd . exe / c wmic shadowcopy
d e l e t e

Many other ransomware families, such as Petya use the LotL

binary Vssadmin.exe, with the parameters delete shadows
/all /quiet, to silently delete backups. Functionally shadowcopy
delete provided as parameters to Wmic.exe accomplishes the

same effect.

We observed other samples in the family using the

Nslookup.exe binary, passing a parameter of

‘gandcrab.bit’ or a similar domain, with no further

functionality. This subroutine is repetitively executed in

attempts to contact command and control servers for

Gandcrab [28] that were no longer online and responding to

the query.



Mosquito 
(2018)

Loader .dll Orchestrator .dll Backdoor .dll
Project 
Cobra 
(2014)

Ipconfig
Powershell
Rundll32
Tasklist

Set

Arp
Ipconfig

Netsh
Rundll32
Tasklist

Set

Rundll32

InjectsLoadsInstalls

Dropper .exe

Loader .tlb

Installs

Dropper .exe Backdoor .pdb

Loads

Rundll32

Fig. 6: Increasing adoption of LotL techniques by APT group

Turla. Shown in two successive modular highly evasive trojans,

Cobra (2014) [16] and Mosquito (2018) [14].

b) Cerber: Cerber, like Gandcrab, is a notably successful

ransomware that has several variants. Apart from proxied exe-

cution via LotL binaries, we observed other evasive techniques

in use by Cerber, such as process injection.

Unlike other ransomware families, Cerber does not delete

shadow copies. However, we noticed an especially complex

proxied execution chain. We observed that Wscript.exe
and Rundll32.exe execute a malicious .vbs and .dll file,

sequentially:

C:\Windows\System32\WScript . exe C:\ Users \admin
\enYXval36C\38 oDr5 . vbs

C:\Windows\System32\Rundl l32 . exe 8 i v q . d l l
a r zy949

We also observed that Cerber delays the execution via

Ping.exe and modifies the registry to achieve persis-

tence. The addition of a malicious .vbs file to the HKEY_-
CURRENT_USER\Software\Microsoft\Windows reg-

istry key means this malicious script is run every time a user

logs on.

C:\Windows\System32\cmd . exe / c p ing 1 2 7 . 0 . 0 . 1
&& r e g add HKEY CURRENT USER\ S o f t w a r e \
M i c r o s o f t \Windows\ C u r r e n t V e r s i o n \RunOnce /
v enYXval36C / t REG SZ / d C:\
enYXval36CenYXval36C\enYXval36C . vbs / f

We also note that some Cerber samples invoke Mshta.exe
to open the ransom note.

C:\Windows\System32\mshta . exe ransom . h t a

c) Turla and GreyEnergy: We executed the GreyEnergy [53]

dropper malware locally (used for attack campaigns on the

Ukranian power grid) and recorded the following shell com-

mands executed using Process Monitor [40]:

C:\Windows\SysWOW64\Rundl l32 . exe {64F97CDC . . .
FAB40CA\} . db #1 #1}

C:\Windows\System32\cmd . exe / c ( p ing l o c a l h o s t
>> n u l & d e l $ p a t h \ grey3 . exe >> n u l )

The execution of Rundll32.exe by GreyEnergy with the

parameter of a .db file causes the proxied execution of a

malicious .dll file, given a .db suffix to appear more innocuous.

This technique is also used by the Mosquito malware visible in

Figure 6, however Mosquito masks malicious .dlls with the use

of .tlb and .pdb extensions to the files. Figure 6 also illustrates

how the Turla APT group has adopted more LotL techniques

in its recent malware campaigns, and exemplifies how some

malicious actors are evolving to conceal their actions.

Rundll32.exe execution by GreyEnergy is also made

persistent by having its location stored in a startup folder that

executes every time the system starts. The execution purpose

of Ping.exe by the second command of the GreyEnergy

dropper is to delay the deletion of the initial dropper file. The

dropper deletes itself to remove forensic evidence.

VII. MAIN TAKEAWAYS AND DISCUSSION

Our results confirmed that LotL techniques are not a negligible

phenomenon. While several technical articles cover this topic,

our systematic measurement went one step further in facil-

itating the understanding of the adoption of this technique

by commodity malware. In this paper, we examined several

different malware datasets and conducted an AV evaluation

experiment, wherein we confirmed low detection rates for

several documented LotL techniques. Given these results, we

can distill the following conclusions and takeaways:

• Almost every popular AV product we tested had diffi-

culties detecting malicious usage of LotL binaries. Even

after responsibly disclosing these issues to each vendor,

only a fraction of them implemented successful detec-

tion mechanisms. Some of these vendors implemented

detection mechanisms for the specific malicious payloads

we implemented, but not the delivery mechanism itself.

Others reported that it is challenging to implement such

countermeasures due to a prohibitive false positive risk.

• To correct this detection gap, we worked with AV

vendors directly to implement detection capabilities.

For instance, Kaspersky implemented detections re-

sultant from our responsible disclosure process, such

as Trojan.Win32.Lolbas.btad.exec, Trojan-
Spy.Win32.Agent.ftps and others. We also release

Yara rules to aid in the detection of LotL techniques.

Furthermore, our study shows that there are differences

in execution purposes between benign and malicious

samples, providing a vector for development of detection

algorithms. In fact, recent papers [71, 21] explore this

promising line of research to overcome the limitation of

existing security products.

• In some descriptions, LotL techniques exclusively refer

to the subset of approaches that can achieve AV evasion.

Nevertheless, in this paper we adopted a broader scope,

and observed that within a balanced dataset of malware,

9.6% of malware used a native system binary to perform

a malicious action.



• With regards to execution purpose, we observe that LotL

binaries were not only leveraged for proxied execution

or evasion, but also to implement common malicious

routines such as delaying execution, modifying system

configuration, ensuring persistence or stopping security

services.

• There was a large variability of prevalence of LotL

techniques among different families as reported by the

AVClass tool. Nevertheless, we can observe that a major-

ity of families showed a low prevalence, while a minority

of families used these techniques with a much higher

prevalence. This means that these techniques are common

enough to be adopted by certain malware authors, but are

not the only (or most prevalent) way of implementing

malicious functionality in malware.

• Legimate software used LotL binaries less than malware,

and although these binaries were used for different pur-

poses, the prevalence is significant enough to make the

accurate detection of malicious usage a challenge for

security vendors. Conversely, APT malware leveraged

LotL binaries at twice the rate of commodity malware.

Given this evidence, we can conclude that LotL techniques

have a significant adoption in current, state-of-the-art malware

and that they represent a challenge for the security industry

from a detection perspective. With this paper, we tried to shed

light onto this phenomenon and raise the awareness within the

research community about this open problem.

LOLBAS Project Contributions. As an examplar of some

of the techniques in use by modern malware, we identified

and documented two new Windows system binaries and added

them to the LOLBAS project repository [46].

At.exe executes scheduled tasks at a future time, which is

used to stealthily maintain persistence on infected systems.

An example of this is SoftCell [30], a threat group that uses

At.exe for the purpose of persistence. Many other threat

groups use Schtasks.exe to execute scheduled tasks, for

persistence.

Netsh.exe is a Windows binary that is typically used to alter

firewall configurations. This is the only purpose we observe it

being used for by malware. However, we document a use case,

where Netsh.exe can be used to load malicious .dlls.

VIII. LIMITATIONS & FUTURE WORK

Intended or Unexpected Functionality. Our measurement

results do not differentiate between the standard functionality

of binaries versus non-standard uses that leverage side effects

to achieve some result. Some of these cases are documented in

the LOLBAS project [46]. An example of intended or standard

usage is Netsh.exe being used to modify firewall rules,

while an unintended usage would be to use Netsh.exe to

run .dlls.

We do measure whether parameters from executed samples

match these usage patterns. Malware binaries in our dataset

do employ these techniques, but make up less than 2%

of total measured LotL binary usage. For this reason, we

do not include a comparison of intent in our measurement

results.

Anti-VM Malware. Due to data originating from dynamic

analysis sandboxes hosted in the cloud, anti-VM evasion tech-

niques used by malware may affect data quality. We mitigate

this through the exclusion of malware samples that have

minimal execution or crash during execution in the sandbox.

Malware has been making use of environment detection and

similar methodologies to halt execution [44] for a number

of years. This may affect data quality, as evasive malware

making use of anti-VM techniques does not demonstrate its

actual behaviour. As such, we may underestimate the number

of samples that potentially use LotL binaries. Nevertheless, our

numbers are a lower-bound of the prevalence of this technique

and prove that it is a significant phenomenon that should not

be ignored.

Human Operators. Many threat actors that use LotL tech-

niques are human operators executing them from remote

shells, offensive security tools, Powershell, Visual Basic or

Batch scripts [30]. While there is anecdotal evidence of

cases like these, it is harder to generalise and to conduct a

measurement study over a representative dataset as we did.

Instead, we narrowed the scope of our paper and focused on

the usage of LotL binaries by malware. We show that this

phenomenon is not negligible and that malware authors also

leverage these techniques in their binaries and not solely in

post-exploitation scripts.

Linux LotL. A future line of research is to explore the use of

these techniques on Linux systems (titled GTFObins [19]). In a

similar manner to LotL techniques on Windows, these binaries

can be used to achieve malicious functionality. Whilst Linux

malware are not as numerous as their Windows counterparts,

it is a subject worthy of analysis due to the rise of IoT botnets

running lightweight Linux systems [12].

Detection. Another future direction for research in this field

is the deployment of detection technologies that attempt to

accurately capture the identified patterns of use for LotL

techniques such as Endpoint Detection and Response (EDR)

systems. Future research should leverage recent work [71, 21]

on data provenance analysis for process execution chains

to enable modelling of legitimate process relationships and

identification of suspicious behavioural patterns.
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APPENDIX

A. Dataset Characterisation

Fig. 7: Number of Positive Detections Distribution

To expand upon the nature of the datasets that we analysed,

we illustrate their characteristics and identify the differences

between them.

Number of Positives. Within VirusTotal, every sample is

scanned by a number of different AV engines. We define the

‘Number of Positives’ variable as the number of engines that

identify a sample as malware. Figure 7 plots the number of

positive matches found by various AV engines to characterise

the dataset.

First Seen Date. The first seen field is a value within

VirusTotal reports which contains the date that this malware

was first uploaded to the VT platform. We plot the first seen
date for each dataset in Figure 8 and Figure 9, for which

the sample range is mostly within the period from 2015 to

2020.

B. Dataset Quality

Rossow et al. [60] describe flaws and limitations in existing

malware analysis papers and prudent steps to take in order to

avoid biases. We adhere to the three critical assessment criteria

(correctness, transparency and realism) as far as is possible in

our paper.

Correctness. We removed goodware as recommended by

Pendlebury et al. [57], to ensure reliability. We accomplished

this by separating elements of the Ember dataset that are

labelled as known goodware. We did not remove samples with

zero detections, as this may be evasive malware and malware

uses LotL techniques partially for the purpose of achieving

evasiveness.

We removed hashes from our dataset if there were duplicates

in sub-datasets or if there was incomplete data available for a

particular hash. We also removed several datasets, reducing our

initial count of over 45,000,000 malware hashes and associated

reports to a distilled selection of datasets.

Transparency. We describe all datasets and their provenance

and characteristics as thoroughly as possible in Appendix

A. The virtual environment in which these samples were

detonated is VT’s fork of Cuckoo sandbox and similar deriva-

tives.

Realism. The aim of dataset selection is to analyse samples

that are a representative cross-section of modern malware.

We included several well-known public malware datasets as

a realistic and typical sample. We also included and focused

our analysis on several datasets that we collected, to show

the malware landscape from different representative perspec-

tives.

C. Windows 10 System Preparation for AV Experimental
Setup

We took two specific steps to facilitate the testing of evasive

the potential of malware on Windows 10 systems.

Bypassing AMSI. Windows underlying Anti-Malware Scan

Interface (AMSI) is a part of the Windows operating system.

Before installing an AV on each virtual system, we disabled

AMSI. While various bypasses that have been historically

available for Windows 10 systems have been patched after-

wards, an AMSI bypass exploit is available at the time of

writing [10].

The purpose of using this approach to disable AMSI is to

isolate the detection and prevention capabilities of various

engines against LotL binaries.

Enabling Unauthenticated Share Access. By default in

Windows 10, guest access to shares is disabled. To perform

these bypasses this feature was enabled [34]. We accomplished

this by running a command as a user and editing group policy
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Fig. 9: First Seen Distribution for Public Datasets

to enable insecure guest logons to an SMB share. Whilst

unauthenticated access to an SMB share is not necessary for

all tests, it was necessary for those that involve staging from

an SMB server. Alternatively, SMB Server login details can be

cached to access them in a similar manner without the editing

of registry keys.

D. LotL binary based Bypass Techniques

Ftp.exe. Ftp.exe can be used to execute commands from

a stored text file containing instructions (-s:file.txt parameter).

When the file is executed a simple Powershell reverse shell

can be spawned.

For some of the AV engines that are more resilient to evasion

techniques, the tool Powercat [18] was invoked to achieve a

UDP reverse shell. Additionally for 2 engines, the Invoke-

Obfuscation [6] toolkit was invoked to obfuscate the contents

of Powercat for evasion.

Mshta.exe. Mshta.exe allows the execution of scripts con-

tained within .hta files. We found it sufficient to use Mshta

to load the .hta file from a network share, which would



call a Powershell script from VBScript and then execute a

reverse shell to evade AV. Many AV programs were able to

identify this payload file as malicious, but when obfuscation

was applied (Spookflare [20]), detection was avoided.

Wmic.exe. Wmic.exe is a native binary on Windows systems

that can, amongst other malicious uses, execute other binaries.

For most of the AVs, evasion is achieved by invoking a simple

Powershell reverse shell from Wmic.exe. For other AVs,

evasion was achieved by executing a shell over UDP using

Powercat, instead of TCP. Further obfuscation was necessary

to bypass AMSI and Windows Defender, for which Invoke-

Obfuscation [6] was also used.

Rundll32.exe. We use Koadic [17], a tool for post-

exploitation, for testing the viability and detectability of

Rundll32.exe. Koadic provides several command-line pa-

rameters to provide to the Rundll32.exe binary. Koadic’s

evasive exploitation leverages the fact that Rundll32.exe,

when provided with the ‘-javascript’ parameter, allows the

execution of Javascript code. Koadic is sufficient to achieve

a bypass for most AV engines, for others JS-Rat-Py [22], a

similar remote access tool, suffices.

Some AV engines were able to identify the execution of

Javascript by Rundll32.exe as malicious, spawning a

network connection. To bypass these, we generated a malicious

.dll with MSFvenom, or in particularly evasive cases, we gen-

erated and compiled a reverse shell .dll from C++ code.

Regsvr32.exe. Regsvr32.exe binary can be used to exe-

cute remote .sct files in the squiblydoo [52] attack. This attack

enables the execution of remotely hosted .sct files, containing

Javascript code that can execute arbitrary commands such as

creating ActiveXObjects. For our repeated experiments, as the

squibblydoo attack has been patched by Microsoft, we used a

bypass that still allows this attack to be conducted, described

by Oddvar Moe [47].

For a number of the bypasses, Koadic was used. This tool

allows a reverse shell to be executed in the form of JavaScript

code. Where Koadic was detected, JS-Rat-Py’s Regsvr32 com-

ponent was not. For others, we used custom code within an

.sct file.

Bitsadmin.exe. Bitsadmin.exe was used to create Back-

ground Intelligent Transfer Service jobs. It is typically used

for the transfer of files between different machines. However

it has undocumented functionality allowing the execution of

binaries or arbitrary commands. It can execute malicious files

and bypass application whitelisting.

Bitsadmin.exe was used to create a Powershell reverse

shell, by creating a job and resuming it. This Powershell re-

verse shell was spawned by either calling Powershell directly,

or performing this via several layers of obfuscation using an

.hta file. This .hta file calls Powershell via a Visual Basic script

within that .hta file called by Mshta.exe.


